

MTAP 抗原(重组蛋白)

中文名称: MTAP 抗原 (重组蛋白)

英文名称: MTAP Antigen (Recombinant Protein)

别 名: methylthioadenosine phosphorylase; BDMF; MSAP; DMSFH; LGMBF; DMSMFH; c86fus; HEL-249

储存: 冷冻(-20℃)

相关类别: 抗原

概述

Fusion protein corresponding to a region derived from 1-154 amino acids of human MTAP

技术规格

Full name:	methylthioadenosine phosphorylase
Synonyms:	BDMF; MSAP; DMSFH; LGMBF; DMSMFH; c86fus; HEL-249
Swissprot:	Q13126
Gene Accession:	BC018625
Purity:	>85%, as determined by Coomassie blue stained SDS-PAGE
Expression system:	Escherichia coli
Tags:	His tag C-Terminus, GST tag N-Terminus
Background:	This gene encodes an enzyme that plays a major role in polyamine metabolism and is important for the salvage of both adenine and m ethionine. The encoded enzyme is deficient in many cancers because this gene and the tumor suppressor p16 gene are co-deleted. Multip le alternatively spliced transcript variants have been described for thi s gene, but their full-length natures remain unknown.